Table of Contents

Preface		xiii
1.	Introduction: Data-Analytic Thinking.	. 1
	The Ubiquity of Data Opportunities	1
	Example: Hurricane Frances	3
	Example: Predicting Customer Churn	4
	Data Science, Engineering, and Data-Driven Decision Making	4
	Data Processing and "Big Data"	7
	From Big Data 1.0 to Big Data 2.0	8
	Data and Data Science Capability as a Strategic Asset	9
	Data-Analytic Thinking	12
	This Book	14
	Data Mining and Data Science, Revisited	14
	Chemistry Is Not About Test Tubes: Data Science Versus the Work of the Data	
	Scientist	15
	Summary	16
2.	Business Problems and Data Science Solutions	19
	Fundamental concepts: A set of canonical data mining tasks; The data mining proce Supervised versus unsupervised data mining.	'SS;
	From Business Problems to Data Mining Tasks	19
	Supervised Versus Unsupervised Methods	24
	Data Mining and Its Results	25
	The Data Mining Process	26
	Business Understanding	28
	Data Understanding	28
	Data Preparation	30
	Modeling	31
	Evaluation	31

	Deployment Implications for Managing the Data Science Team	34
	Other Analytics Techniques and Technologies Statistics	35 35
	Database Querying	37
	Data Warehousing	38
	Regression Analysis	39
	Machine Learning and Data Mining	39
	Answering Business Questions with These Techniques	40
	Summary	41
3.	Introduction to Predictive Modeling: From Correlation to Supervised Segmentation Fundamental concepts: Identifying informative attributes; Segmenting data by progressive attribute selection.	ion. 43
	Exemplary techniques: Finding correlations; Attribute/variable selection; Tree induction.	
	Models, Induction, and Prediction	44
	Supervised Segmentation	48
	Selecting Informative Attributes	49
	Example: Attribute Selection with Information Gain	56
	Supervised Segmentation with Tree-Structured Models	62
	Visualizing Segmentations	67
	Trees as Sets of Rules	71
	Probability Estimation	71
	Example: Addressing the Churn Problem with Tree Induction	73
	Summary	78
4.	Fitting a Model to Data Fundamental concepts: Finding "optimal" model parameters based on data; Che the goal for data mining; Objective functions; Loss functions.	
	Exemplary techniques: Linear regression; Logistic regression; Support-vector ma	achines.
	Classification via Mathematical Functions	83
	Linear Discriminant Functions	85
	Optimizing an Objective Function	88
	An Example of Mining a Linear Discriminant from Data	89
	Linear Discriminant Functions for Scoring and Ranking Instances	91
	Support Vector Machines, Briefly	92
	Regression via Mathematical Functions	9 5
	Class Probability Estimation and Logistic "Regression"	97
	* Logistic Regression: Some Technical Details	100
	Example: Logistic Regression versus Tree Induction	103
	Nonlinear Functions, Support Vector Machines, and Neural Networks	107

	Summary	110
5.	Overfitting and Its Avoidance	111
	Generalization	111
	Overfitting	113
	Overfitting Examined	113
	Holdout Data and Fitting Graphs	113
	Overfitting in Tree Induction	116
	Overfitting in Mathematical Functions	118
	Example: Overfitting Linear Functions	119
	* Example: Why Is Overfitting Bad?	124
	From Holdout Evaluation to Cross-Validation	126
	The Churn Dataset Revisited	129
	Learning Curves	130
	Overfitting Avoidance and Complexity Control	133
	Avoiding Overfitting with Tree Induction	133
	A General Method for Avoiding Overfitting	134
	* Avoiding Overfitting for Parameter Optimization	136
	Summary	140
ó.	Similarity, Neighbors, and Clusters	141
	Exemplary techniques: Searching for similar entities; Nearest neighbor methods; Clustering methods; Distance metrics for calculating similarity.	
	Similarity and Distance	142
	Nearest-Neighbor Reasoning	144
	Example: Whiskey Analytics	145
	Nearest Neighbors for Predictive Modeling	147
	How Many Neighbors and How Much Influence?	149
	Geometric Interpretation, Overfitting, and Complexity Control	151
	Issues with Nearest-Neighbor Methods	155
	Some Important Technical Details Relating to Similarities and Neighbors	157
	Heterogeneous Attributes * Other Distance Functions	157
	* Combining Functions: Calculating Scores from Neighbors	158
	Clustering	162163
	Example: Whiskey Analytics Revisited	164
	Hierarchical Clustering	165
	Theraremeat Orastering	103

	Nearest Neighbors Revisited: Clustering Around Centroids Example: Clustering Business News Stories	170 175
	Understanding the Results of Clustering	178
	* Using Supervised Learning to Generate Cluster Descriptions	180
	Stepping Back: Solving a Business Problem Versus Data Exploration	183
	Summary	186
7.	Decision Analytic Thinking I: What Is a Good Model?	187 e
	Exemplary techniques: Various evaluation metrics; Estimating costs and benefits; Calculating expected profit; Creating baseline methods for comparison.	
	Evaluating Classifiers	188
	Plain Accuracy and Its Problems	189
	The Confusion Matrix	189
	Problems with Unbalanced Classes	190
	Problems with Unequal Costs and Benefits	193
	Generalizing Beyond Classification	193
	A Key Analytical Framework: Expected Value	194
	Using Expected Value to Frame Classifier Use	195
	Using Expected Value to Frame Classifier Evaluation	196
	Evaluation, Baseline Performance, and Implications for Investments in Data Summary	204 207
8.	Visualizing Model Performance	209
	Ranking Instead of Classifying	209
	Profit Curves	212
	ROC Graphs and Curves	214
	The Area Under the ROC Curve (AUC)	219
	Cumulative Response and Lift Curves	219
	Example: Performance Analytics for Churn Modeling	223 231
	Summary	231
9.	Evidence and Probabilities	233 ic
	· · · · · · · · · · · · · · · · · · ·	

	Example: Targeting Online Consumers With Advertisements	233
	Combining Evidence Probabilistically	235
	Joint Probability and Independence	236
	Bayes' Rule	237
	Applying Bayes' Rule to Data Science	239
	Conditional Independence and Naive Bayes	241
	Advantages and Disadvantages of Naive Bayes	243
	A Model of Evidence "Lift"	244
	Example: Evidence Lifts from Facebook "Likes"	246
	Evidence in Action: Targeting Consumers with Ads	248
	Summary	248
10.	Representing and Mining Text	251
	Fundamental concepts: The importance of constructing mining-friendly data representations; Representation of text for data mining.	
	Exemplary techniques: Bag of words representation; TFIDF calculation; N-grams; Stemming; Named entity extraction; Topic models.	
	Why Text Is Important	252
	Why Text Is Difficult	252
	Representation	253
	Bag of Words	254
	Term Frequency	254
	Measuring Sparseness: Inverse Document Frequency	256
	Combining Them: TFIDF	258
	Example: Jazz Musicians	258
	* The Relationship of IDF to Entropy	263
	Beyond Bag of Words	265
	N-gram Sequences	265
	Named Entity Extraction	266
	Topic Models	266
	Example: Mining News Stories to Predict Stock Price Movement	268
	The Task	268
	The Data	270
	Data Preprocessing	273
	Results	273
	Summary	277
11.	Decision Analytic Thinking II: Toward Analytical Engineering Fundamental concept: Solving business problems with data science starts with analytical engineering: designing an analytical solution, based on the data, tools, a techniques available.	279 and
	Exemplary technique: Expected value as a framework for data science solution desi	gn.

	Targeting the Best Prospects for a Charity Mailing The Expected Value Framework: Decomposing the Business Problem and Recomposing the Solution Pieces A Brief Digression on Selection Bias Our Churn Example Revisited with Even More Sophistication The Expected Value Framework: Structuring a More Complicated Business Problem Assessing the Influence of the Incentive From an Expected Value Decomposition to a Data Science Solution Summary	280 282 283 283 285 286 289
12.	Other Data Science Tasks and Techniques. Fundamental concepts: Our fundamental concepts as the basis of many common of science techniques; The importance of familiarity with the building blocks of data science.	291 data
	Exemplary techniques: Association and co-occurrences; Behavior profiling; Link prediction; Data reduction; Latent information mining; Movie recommendation; Biovariance decomposition of error; Ensembles of models; Causal reasoning from data	
	Co-occurrences and Associations: Finding Items That Go Together	292
	Measuring Surprise: Lift and Leverage	293
	Example: Beer and Lottery Tickets	294
	Associations Among Facebook Likes	295
	Profiling: Finding Typical Behavior	298
	Link Prediction and Social Recommendation	303
	Data Reduction, Latent Information, and Movie Recommendation	304
	Bias, Variance, and Ensemble Methods	308
	Data-Driven Causal Explanation and a Viral Marketing Example	311
	Summary	312
13.	Data Science and Business Strategy Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.	315
	Thinking Data-Analytically, Redux	315
	Achieving Competitive Advantage with Data Science	317
	Sustaining Competitive Advantage with Data Science	318
	Formidable Historical Advantage	319
	Unique Intellectual Property	319
	Unique Intangible Collateral Assets	320
	Superior Data Scientists	320
	Superior Data Science Management	322
	Attracting and Nurturing Data Scientists and Their Teams	323

	Examine Data Science Case Studies	325	
	Be Ready to Accept Creative Ideas from Any Source	326	
	Be Ready to Evaluate Proposals for Data Science Projects	326	
	Example Data Mining Proposal	327	
	Flaws in the Big Red Proposal	328	
	A Firm's Data Science Maturity	329	
14.	Conclusion.	333	
	The Fundamental Concepts of Data Science	333	
	Applying Our Fundamental Concepts to a New Problem: Mining Mobile		
	Device Data	336	
	Changing the Way We Think about Solutions to Business Problems	339	
	What Data Can't Do: Humans in the Loop, Revisited	340	
	Privacy, Ethics, and Mining Data About Individuals	343	
	Is There More to Data Science?	344	
	Final Example: From Crowd-Sourcing to Cloud-Sourcing	345	
	Final Words	346	
A.	Proposal Review Guide	349	
В.	Another Sample Proposal	353	
Glo	Glossary		
Dil			
Bit	Bibliography		
lno	Index 30		